آموزشیى

آموزش ترجمهة متونر ياضى

ما مى خواهيم نشــن بدهيم كه p درست اســت فرض مى كنيم چنين نباشد و بنابراين p ~ (نقيض p)
 تناقض در فصل ا بهدست آورديم، p بايد درست باشد.

فضبية 1. 1

اگر nr يك عدد صحيح و زوج باشد، در اين صورت n نيز همينطور است (صحيح و زوج است). اثبات:

nº تناقض دارد. بنابراين n مى n

اثبات:
فرض كنيم چنين نباشد. يعنى فرض كنيم كه مقسومعليه مشتر ك وجود دارند بهطورى كه:

 با به توان دو رساندن خواهيم داشت: اين تساوى نشان مىدهد كه nn زوج است و طبق قضيئ ا. ال ا، n زوج است.
 با فرض ما كه m و n هيج مقســومعليه (عامل) مشــتر كـى ندارند، در تناقض است. بنابراين، باشد.

	لغتها و اصطلاحات مهم
1.Proof.. اثبات،بر هان	2.Contradiction...
3. Assume .. ${ }^{\text {فـ.... }}$	4.Even ..
5.integer..	
7.Contradicts ...	8.Assumption .. فرض فر فر فر
9. Irrational \qquad عُنْع، اصم، ناگَويا	10.Squaring ..
11. Common divisors عاملهاى مشــر كا	12.Conclude ..

Proof by contradiction:

We want to show that p is true. We assume it is not and therefore $\sim p$ is true and then derive a contradiction. By the rule of contradiction discussed in Chapter 1, p must be true.

Theorem 10.1

If n^{2} is an even integer so is n.
Proof.
Suppose the contrary. That is suppose that n is odd. Then there is an integer k such that $n=2 k+1$. In this case, $n^{2}=2\left(2 k^{2}+2 k\right)+1$ is odd and this contradicts the assumption that n^{2} is even. Hence, n must be even.

Theorem 10.2

The number $\sqrt{2}$ is irrational.

Proof.

Suppose not. That is, suppose that $\sqrt{2}$ is rational. Then there exist two integers m and n with no common divisors such that $\sqrt{2}=\frac{\mathrm{m}}{\mathrm{n}}$. Squaring both sides of this equality we find that $2 n^{2}=m^{2}$. Thus, m^{2} is even. By Theorem 10.1, m is even. That is, 2 divides m. But then $m=2 k$ for some integer k. Taking the square we find that $2 n^{2}=m^{2}=4 k^{2}$, that is $n^{2}=2 k^{2}$. This says that n^{2} is even and by Theorem 10.1, n is even. We conclude that 2 divides both m and n and this contradicts our assumption that m and n have no common divisors. Hence, $\sqrt{2}$ must be irrational.
تر جمه براى دانش آموزان

Theorem 10.3

The set of prime numbers is infinite.

Proof.

Suppose not. That is, suppose that the set of prime numbers is finite. Then these prime numbers can be listed, say, $p_{1}, p_{2}, \ldots, p_{n}$. Now, Consider the integer $N=p_{1} p_{2} \ldots p_{n}+1$. By the Unique Factorization Theorem, (See Problem 12.5) N can be factored into primes. Thus, there is a prime number p_{i} such that $p_{i} \mid N$. But since $p_{i} \mid p_{1} p_{2} \ldots p_{n}$ we have $p_{i} \mid\left(N-p_{1} p_{2} \ldots p_{n}\right)=1$, a contradiction since $p_{i}>1$

