حميدرضا اميري

آموزش ترجمهٔ متون ریاضی

اثبات از طریق برهان خلف

ما میخواهیم نشان بدهیم که p درست است. فرض میکنیم چنین نباشد و بنابراین p درست است. فرض میکنیم چنین نباشد و بنابراین pدرست است. سپس یک تناقض به دست می آوریم (نتیجه می گیریم). با توجه به حکمی که از بحث دربارهٔ تناقض در فصل ۱ بهدست آوردیم، p باید درست باشد.

قضىهٔ ۱. ۱۰

 n^{r} یک عدد صحیح و زوج باشد، در این صورت n نیز همین طور است (صحیح و زوج است).

اثبات:

خلاف این را فرض می کنیم. یعنی فرض می کنیم n فرد باشد. بنابراین، عددی صحیح مانند kدارد به قسمی که: n=Yk+1. در این حالت $n^{Y}=Y(Yk^{Y}+Yk)+1$ عددی فرد است و این با فرض زوج بودن تناقض دارد. بنابراین n میباید زوج باشد. n^{τ}

قضية ٢. ١٠

عدد $\sqrt{\Upsilon}$ گنگ است.

فرض کنیم چنین نباشد. یعنی فرض کنیم که $\sqrt{\tau}$ گویاست. بنابراین دو عدد صحیح m و n بدون هیچ مقسوم علیه مشتر ک وجود دارند به طوری که: $\frac{m}{n}=\frac{1}{n}$ با به توان ۲ رساندن دو طرف این تساوی خواهیم داشت: m' = m' بنابراین m' زوج است. طبق قضیهٔ m' داشت: m' = m' عدد m' عدد وج است. یعنی، ۲ عدد m'm=7k داریم: k مانند k داریم: k داریم: k داریم: k داریم: k داریم: k

با به توان دو رساندن خواهیم داشت: $\mathsf{Tn}^\mathsf{T} = \mathsf{m}^\mathsf{T} = \mathsf{fk}^\mathsf{T}$ که نتیجه می گیریم: $\mathsf{n}^\mathsf{T} = \mathsf{Tk}^\mathsf{T}$

این تساوی نشان میدهد که ^{n۲} زوج است و طبق قضیهٔ ۱۰.۱، n زوج است.

ما نتیجه گرفتیم که ۲ هر دو عدد m و n را می شمارد (m و n هر دو بر عدد ۲ بخش پذیرند) و این با فرض ما که m و n هیچ مقسومعلیه (عامل) مشتر کی ندارند، در تناقض است. بنابراین، \sqrt{r} باید گنگ باشد.

	لغتها و اصطلاحات مهم
اثبات،برهانا	خُلفخُلف
فـرض كـردنفـرض كـردن	روج
عددصحیحعددصحیح	فرض كردن فرض كردن
تناقضتناقض	فرض 8.Assumption
گُنگ، اصم، ناگویاگنگ، اصم، ناگویا	به توان ۲ رساندنت
عاملهای مشــترکک	نتيجه گيرىنتيجه گيرى

Proof by contradiction:

We want to show that p is true. We assume it is not and therefore $\sim p$ is true and then derive a contradiction. By the rule of contradiction discussed in Chapter 1, p must be true.

Theorem 10.1

If n^2 is an even integer so is n.

Proof.

Suppose the contrary. That is suppose that n is odd. Then there is an integer k such that n=2k+1. In this case, $n^2 = 2(2k^2 + 2k) + 1$ is odd and this contradicts the assumption that n^2 is even. Hence, nmust be even. ■

Theorem 10.2

The number $\sqrt{2}$ is irrational.

Proof.

Suppose not. That is, suppose that $\sqrt{2}$ is rational. Then there exist two integers m and n with no common divisors such that $\sqrt{2} = \frac{m}{n}$. Squaring both sides of this equality we find that $2n^2 = m^2$. Thus, m^2 is even. By Theorem 10.1, m is even. That is, 2 divides m. But then m = 2k for some integer k. Taking the square we find that $2n^2=m^2=4k^2$, that is $n^2=2k^2$. This says that n^2 is even and by Theorem 10.1, n is even. We conclude that 2 divides both m and n and this contradicts our assumption that m and n have no common divisors. Hence, $\sqrt{2}$ must be irrational.

ترجمه برای دانش آموزان

Theorem 10.3

The set of prime numbers is infinite.

Proof.

Suppose not. That is, suppose that the set of prime numbers is finite. Then these prime numbers can be listed, say, $p_1, p_2, ..., p_n$. Now, Consider the integer $N = p_1 p_2 ... p_n + 1$. By the Unique Factorization Theorem, (See Problem 12.5) N can be factored into primes. Thus, there is a prime number p, such that p_i/N . But since $p_i/p_1p_2...p_n$ we have $p_i/(N-p_1p_2...p_n)=1$, a contradiction since $p_i>1$